SCH-202676: An allosteric modulator of both agonist and antagonist binding to G protein-coupled receptors.
نویسندگان
چکیده
A novel thiadiazole compound, SCH-202676 (N-(2,3-diphenyl-1,2, 4-thiadiazol-5-(2H)-ylidene)methanamine), has been identified as an inhibitor of both agonist and antagonist binding to G protein-coupled receptors (GPCRs). SCH-202676 inhibited radioligand binding to a number of structurally distinct, heterologously expressed GPCRs, including the human mu-, delta-, and kappa-opioid, alpha- and beta-adrenergic, muscarinic M1 and M2, and dopaminergic D1 and D2 receptors, but not to the tyrosine kinase epidermal growth factor receptor. SCH-202676 had no direct effect on G protein activity as assessed by [35S]guanosine-5'-O-(gamma-thio)triphosphate binding to purified recombinant G(oalpha)- or G(betagamma)-stimulated ADP-ribosylation of G(oalpha) by pertussis toxin. In addition, SCH-202676 inhibited antagonist binding to the beta2-adrenergic receptor expressed in Escherichia coli, a system devoid of classical heterotrimeric G proteins. SCH-202676 inhibited radiolabeled agonist and antagonist binding to the alpha2a-adrenergic receptor with an IC50 value of 0.5 microM, decreased the Bmax value of the binding sites with a slight increase in the KD value, and inhibited agonist-induced activation of the receptor. The effects of SCH-202676 were reversible. Incubation of plasma membranes with 10 microM SCH-202676 did not alter subsequent radioligand binding to the alpha2a-adrenergic receptor and the dopaminergic D1 receptor. Taken together, our data suggest that SCH-202676 has the unique ability to allosterically regulate agonist and antagonist binding to GPCRs in a manner that is both selective and reversible. The scope of the data presented suggests this occurs by direct interaction with a structural motif common to a large number of GPCRs or by activation/inhibition of an unidentified accessory protein that regulates GPCR function.
منابع مشابه
Investigation of the interaction of a putative allosteric modulator, N-(2,3-diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) methanamine hydrobromide (SCH-202676), with M1 muscarinic acetylcholine receptors.
The interaction between a novel G protein-coupled receptor modulator, N-(2,3-diphenyl-1,2,4-thiadiazole-5-(2H)-ylidene) methanamine hydrobromide (SCH-202676), and the M(1) muscarinic acetylcholine receptor (mAChR) was investigated. In contrast to the prototypical mAChR allosteric modulator, heptane 1,7-bis-(dimethyl-3'-phthalimidopropyl)-ammonium bromide (C(7)/3-phth), SCH-202676 had no effect ...
متن کاملA Hybrid Indoloquinolizidine Peptide as Allosteric Modulator of Dopamine D1 Receptors □S
The indoloquinolizidine-peptide 28 [(3S,12bR)-N-((S)-1-((S)-1-((S)2-carbamoylpyrrolidin-1-yl)-3-(4-fluorophenyl)-1-oxopropan-2ylamino)-4-cyclohexyl-1-oxobutan-2-yl)-1,2,3,4,6,7,12, 12b-octahydroindolo[2,3-a]quinolizine-3-carboxamide], a transindoloquinolizidine-peptide hybrid obtained by a combinatorial approach, behaved as an orthosteric ligand of all dopamine D2like receptors (D2, D3, and D4)...
متن کاملPurification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2.
Despite extensive characterization of the mu-opioid receptor (MOR), the biochemical properties of the isolated receptor remain unclear. In light of recent reports, we proposed that the monomeric form of MOR can activate G proteins and be subject to allosteric regulation. A mu-opioid receptor fused to yellow fluorescent protein (YMOR) was constructed and expressed in insect cells. YMOR binds lig...
متن کاملA hybrid indoloquinolizidine peptide as allosteric modulator of dopamine D1 receptors.
The indoloquinolizidine-peptide 28 [(3S,12bR)-N-((S)-1-((S)-1-((S)-2-carbamoylpyrrolidin-1-yl)-3-(4-fluorophenyl)-1-oxopropan-2-ylamino)-4-cyclohexyl-1-oxobutan-2-yl)-1,2,3,4,6,7,12, 12b-octahydroindolo[2,3-a]quinolizine-3-carboxamide], a trans-indoloquinolizidine-peptide hybrid obtained by a combinatorial approach, behaved as an orthosteric ligand of all dopamine D(2)-like receptors (D(2), D(3...
متن کاملHomobivalent Conjugation Increases the Allosteric Effect of 9-aminoacridine at the α1-Adrenergic Receptors.
The α1-adrenergic receptors are targets for a number of cardiovascular and central nervous system conditions, but the current drugs for these receptors lack specificity to be of optimal clinical value. Allosteric modulators offer an alternative mechanism of action to traditional α1-adrenergic ligands, yet there is little information describing this drug class at the α1-adrenergic receptors. We ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2001